Optimization Theory Tutorial 7

Wang Xia

2018/3/5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Table of Contents

Quick Review

Exexcise

Table of Contents

Quick Review

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exexcise

Existence of Optimal Solutions

The set of **minima** of a real-valued function f over a nonempty set X, call is X^* , is equal to the intersection of X and the level sets of f that have a common points with X:

$$X^* = \bigcap_{k=0}^{\infty} \{ x \in X | f(x) \le \gamma_k \},\$$

where $\{\gamma_k\}$ is any scalar sequence with $\gamma_k \downarrow inf_{x \in X} f(x)$.

Existence of Optimal Solutions

Theorem

Weierstrass' Theorem Consider a closed proper function

 $f \to (-\infty,\infty],$

and assume that any one of the following three conditions holds:
(1) dom(f) is bounded.
(2) There exists a scalar γ̄ such that the level set

 $\{x|f(x) \leq \bar{\gamma}\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

is nonempty and bounded.

(3) f is coercive.

Then the set of minima of f over \Re^n is nonempty and compact.

Partial Minimization of convex functions

Theorem Consider a function $F : \Re^{n+m} \to (-\infty, \infty]$ and the function $f : \Re^n \to [-\infty, \infty]$ defined by

$$f(x) = inf_{z \in \Re^m F(x,z)}.$$

Then:

(a) If F is convex, then f is also convex.(b) We have

$$P(epi(F)) \subset epi(f) \subset cl(P(epi(F))),$$

where $P(\cdot)$ denotes projection on the space of (x, w), i.e., for any subset S of \Re^{n+m+1} , $P(S) = (x, w)|(x, z, w) \in S$.

Saddle Point and Minimax Theory

Theorem

Saddle Point: A pair of vectors $x^* \in X$ and $z^* \in Z$ is called a saddle point of ϕ if

$$\phi(x^*, z) \le \phi(x^*, z^*) \le \phi(x, z^*), \forall x \in X, \forall z \in Z.$$

minimax equality:

$$sup_{z\in Z}inf_{x\in X}\phi(x,z) = inf_{x\in X}sup_{z\in Z}\phi(x,z).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Saddle Point and Minimax Theory

Theorem

A pair (x^*, z^*) is a saddle point of ϕ if and only if the minimax equality holds, and x^* is an optimal solution of the problem:

minimize
$$\sup_{z \in Z} \phi(x, z)$$
, subject to $x \in X$,

while z^* is an optimal solution of the problem

maximize
$$\inf_{x \in X} \phi(x, z)$$
, subject to $z \in Z$

Saddle Point and Minimax Theory

Lemma 2.6.1: Let X be a nonempty convex subset of \mathbb{R}^n , let Z be a nonempty subset of \mathbb{R}^m , and let $\phi: X \times Z \mapsto \mathbb{R}$ be a function. Assume that for each $z \in Z$, the function $\phi(\cdot, z): X \mapsto \mathbb{R}$ is convex. Then the function p of Eq. (2.33) is convex.

Saddle Point and Minimax Theory

Lemma 2.6.2: Let X be a nonempty subset of \mathbb{R}^n , let Z be a nonempty convex subset of \mathbb{R}^m , and let $\phi : X \times Z \mapsto \mathbb{R}$ be a function. Assume that for each $x \in X$, the function $-\phi(x, \cdot) : Z \mapsto \mathbb{R}$ is closed and convex. Then the function $q : \mathbb{R}^m \mapsto [-\infty, \infty]$ given by

$$q(\mu) = \inf_{(u,w)\in \operatorname{epi}(p)} \{w + u'\mu\}, \qquad \mu \in \Re^m,$$

where p is given by Eq. (2.33), satisfies

$$q(\mu) = \begin{cases} \inf_{x \in X} \phi(x, \mu) & \text{if } \mu \in Z, \\ -\infty & \text{if } \mu \notin Z. \end{cases}$$
(2.36)

Furthermore, we have $q^* = w^*$ if and only if the minimax equality (2.26) holds.

Saddle Point and Minimax Theory

Proposition 2.6.2: (Minimax Theorem I) Let X and Z be nonempty convex subsets of \Re^n and \Re^m , respectively, and let $\phi : X \times Z \mapsto \Re$ be a function. Assume that for each $z \in Z$, the function $\phi(\cdot, z) : X \mapsto \Re$ is convex, and for each $x \in X$, the function $-\phi(x, \cdot) : Z \mapsto \Re$ is closed and convex. Assume further that

 $\inf_{x\in X}\sup_{z\in Z}\phi(x,z)<\infty.$

Then, the minimax equality holds, i.e.,

 $\sup_{z\in Z}\inf_{x\in X}\phi(x,z)=\inf_{x\in X}\sup_{z\in Z}\phi(x,z),$

if and only if the function p of Eq. (2.33) is lower semicontinuous at u = 0, i.e., $p(0) \leq \liminf_{k \to \infty} p(u_k)$ for all sequences $\{u_k\}$ with $u_k \to 0$.

Saddle Point and Minimax Theory

Proposition 2.6.3: (Minimax Theorem II) Let X and Z be nonempty convex subsets of \Re^n and \Re^m , respectively, and let ϕ : $X \times Z \mapsto \Re$ be a function. Assume that for each $z \in Z$, the function $\phi(\cdot, z) : X \mapsto \Re$ is convex, and for each $x \in X$, the function $-\phi(x, \cdot) : Z \mapsto \Re$ is closed and convex. Assume further that

 $-\infty < \inf_{x \in X} \sup_{z \in Z} \phi(x, z),$

Saddle Point and Minimax Theory

and that 0 lies in the relative interior of the effective domain of the function p of Eq. (2.33). Then, the minimax equality holds, i.e.,

$$\sup_{z\in Z}\inf_{x\in X}\phi(x,z)=\inf_{x\in X}\sup_{z\in Z}\phi(x,z),$$

and the supremum over Z in the left-hand side is finite and is attained. Furthermore, the set of $z \in Z$ attaining this supremum is compact if and only if 0 lies in the interior of the effective domain of p.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Exexcise

Table of Contents

Quick Review

Exexcise

★□> <圖> < E> < E> E のQ@

EX 1 Saddle Points in Two Dimensions

Consider a function ϕ of two real variables x and z taking values in compact intervals of X and Z, respectively. Assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$. Similarly, assume that for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$. Assume further that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Show that ϕ has a saddle point (x^*, z^*) . Use this to investigate the existence of saddle points of $\phi(x, z) = x^2 + z^2$ over X = [0, 1] and Z = [0, 1].

We consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. We assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$, and for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$,

$$\hat{x}(z) = \arg\min_{x \in X} \phi(x, z), \qquad \hat{z}(x) = \arg\max_{z \in Z} \phi(x, z)$$

Consider the composite function $f: X \mapsto X$ given by

$$f(x) = \hat{x}\big(\hat{z}(x)\big),$$

which is a continuous function in view of the assumption that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Assume that the compact interval X is given by [a, b]. We now show that the function f has a fixed point, i.e., there exists some $x^* \in [a, b]$ such that

$$f(x^*) = x^*$$

Define the function $g: X \mapsto X$ by

$$g(x) = f(x) - x.$$

Assume that f(a) > a and f(b) < b, since otherwise we are done. We have

g(a) = f(a) - a > 0,g(b) = f(b) - b < 0.

Since g is a continuous function, the preceding relations imply that there exists some $x^* \in (a, b)$ such that $g(x^*) = 0$, i.e., $f(x^*) = x^*$. Hence, we have

$$\hat{x}\big(\hat{z}(x^*)\big) = x^*.$$

Denoting $\hat{z}(x^*)$ by z^* , we get

$$x^* = \hat{x}(z^*), \qquad z^* = \hat{z}(x^*).$$
 (2.24)

By definition, a pair $(\overline{x}, \overline{z})$ is a saddle point if and only if

$$\max_{z \in Z} \phi(\overline{x}, z) = \phi(\overline{x}, \overline{z}) = \min_{x \in X} \phi(x, \overline{z}),$$

or equivalently, if $\overline{x} = \hat{x}(\overline{z})$ and $\overline{z} = \hat{z}(\overline{x})$. Therefore, from Eq. (2.24), we see that (x^*, z^*) is a saddle point of ϕ .

We now consider the function $\phi(x, z) = x^2 + z^2$ over X = [0, 1] and Z = [0, 1]. For each $z \in [0, 1]$, the function $\phi(\cdot, z)$ is minimized over [0, 1] at a unique point $\hat{x}(z) = 0$, and for each $x \in [0, 1]$, the function $\phi(x, \cdot)$ is maximized over [0, 1] at a unique point $\hat{z}(x) = 1$. These two curves intersect at $(x^*, z^*) = (0, 1)$, which is the unique saddle point of ϕ .

Ex 2 Saddle Points of Quadratic Functions

Consider a quadratic function $\phi: X \times Z \to \Re$ of the form

$$\phi(x,z) = x'Qx + x'Dz - z'Rz,$$

where Q and R are symmetric positive semidefinite $n \times n$ and $m \times m$ matrices, respectively, D is some $n \times m$ matrix, and X and Z are subsets of \Re^n and \Re^m , respectively. Derive conditions under which ϕ has at least one saddle point.

- Exexcise

Solution 2

Let X and Z be closed and convex sets. Then, for each $z \in Z$, the function $t_z : \Re^n \mapsto (-\infty, \infty]$ defined by

$$t_z(x) = \begin{cases} \phi(x, z) & \text{if } x \in X, \\ \infty & \text{otherwise,} \end{cases}$$

is closed and convex in view of the assumption that Q is a positive semidefinite symmetric matrix. Similarly, for each $x \in X$, the function $r_x : \Re^m \mapsto (-\infty, \infty]$ defined by

$$r_x(z) = \begin{cases} -\phi(x,z) & \text{if } z \in Z, \\ \infty & \text{otherwise,} \end{cases}$$

is closed and convex in view of the assumption that R is a positive semidefinite symmetric matrix. Hence, Assumption 2.6.1 is satisfied. Let also Assumptions 2.6.2 and 2.6.3 hold, i.e,

$$\inf_{x \in X} \sup_{z \in Z} \phi(x, z) < \infty,$$

and

$$-\infty < \sup_{z \in Z} \inf_{x \in X} \phi(x, z).$$

By the positive semidefiniteness of Q, it can be seen that, for each $z \in Z$, the recession cone of the function t_z is given by

$$R_{t_z} = R_X \cap N(Q) \cap \{y \mid y'Dz \le 0\},\$$

where R_X is the recession cone of the convex set X and N(Q) is the null space of the matrix Q. Similarly, for each $z \in Z$, the constancy space of the function t_z is given by

$$L_{t_z} = L_X \cap N(Q) \cap \{y \mid y'Dz = 0\},\$$

where L_X is the lineality space of the set X. By the positive semidefiniteness of R, for each $x \in X$, it can be seen that the recession cone of the function r_x is given by

$$R_{r_x} = R_Z \cap N(R) \cap \{y \mid x' Dy \ge 0\},\$$

(日) (日) (日) (日) (日) (日) (日) (日)

- Exexcise

Solution 2

where R_Z is the recession cone of the convex set Z and N(R) is the null space of the matrix R. Similarly, for each $x \in X$, the constancy space of the function r_x is given by

$$L_{r_x} = L_Z \cap N(R) \cap \{y \mid x'Dy = 0\},\$$

where L_Z is the lineality space of the set Z.

 \mathbf{If}

$$\bigcap_{z \in Z} R_{t_z} = \{0\}, \text{ and } \bigcap_{x \in X} R_{r_x} = \{0\},$$
(2.25)

then it follows from the Saddle Point Theorem part (a), that the set of saddle points of ϕ is nonempty and compact. [In particular, the condition given in Eq. (2.25) holds when Q and R are positive definite matrices, or if X and Z are compact.]

Similarly, if

$$\bigcap_{z \in Z} R_{t_z} = \bigcap_{z \in Z} L_{t_z}, \quad \text{and} \quad \bigcap_{x \in X} R_{r_x} = \bigcap_{x \in X} L_{r_x},$$

then it follows from the Saddle Point Theorem part (b), that the set of saddle points of ϕ is nonempty.

Ex 3

Convex-concave functions and saddle points

We say the function $f: \Re^n \times \Re^m \to \Re$ is convex-concave if f(x, z) is a concave function of z, for each fixed x, and a convex function of x, for each fixed z. We also require its domain to have the product form $\operatorname{dom} f = A \times B$, where $A \subset \Re^n$ and $B \subset \Re^m$ are convex.

- (a) Give a second-order condition for a twice differentiable function $f: \Re^n \times \Re^m \to \Re$ to be convex-concave, interms of its Hessian $\nabla^2 f(x, z)$.
- (b) Suppose that $f: \Re^n \times \Re^m \to \Re$ is convex-concave and differentiable, with $\nabla f(\hat{x}, \hat{z}) = 0$. Show that the saddle point property holds: for all x, z, we have

$$f(\hat{x}, z \le f(\hat{x}, \hat{z})) \le f(x, \hat{z}).$$

Show that this implies that f satisfies the strong max-min property:

$$sup_z inf_x f(x, z) = inf_x sup_z f(x, z)$$

(and their common value is $f(\hat{x}, \hat{z})$).

(c) Now suppose that $f : \Re^n \times \Re^m \to \Re$ is differentiable, but not necessarily convex-concave, and the saddle-point property holds at \hat{x} , \hat{z} :

$$f(\hat{x}, z \le f(\hat{x}, \hat{z})) \le f(x, \hat{z}).$$

for all x, z. Show that $\nabla f(\hat{x}, \hat{z}) = 0$.

(a) The condition follows directly from the second-order conditions for convexity and concavity: it is

$$\nabla^2_{xx} f(x,z) \succeq 0, \qquad \nabla^2_{zz} f(x,z) \preceq 0,$$

for all x, z. In terms of $\nabla^2 f$, this means that its 1, 1 block is positive semidefinite, and its 2, 2 block is negative semidefinite.

(b) Let us fix \tilde{z} . Since $\nabla_x f(\tilde{x}, \tilde{z}) = 0$ and $f(x, \tilde{z})$ is convex in x, we conclude that \tilde{x} minimizes $f(x, \tilde{z})$ over x, *i.e.*, for all z, we have

$$f(\tilde{x}, \tilde{z}) \le f(x, \tilde{z}).$$

This is one of the inequalities in the saddle-point condition. We can argue in the same way about \tilde{z} . Fix \tilde{x} , and note that $\nabla_z f(\tilde{x}, \tilde{z}) = 0$, together with concavity of this function in z, means that \tilde{z} maximizes the function, *i.e.*, for any x we have

$$f(\tilde{x}, \tilde{z}) \ge f(\tilde{x}, z).$$

(c) To establish this we argue the same way. If the saddle-point condition holds, then \tilde{x} minimizes $f(x, \tilde{z})$ over all x. Therefore we have $\nabla f_x(\tilde{x}, \tilde{z}) = 0$. Similarly, since \tilde{z} maximizes $f(\tilde{x}, z)$ over all z, we have $\nabla f_z(\tilde{x}, \tilde{z}) = 0$.