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Existence of Optimal Solutions

The set of minima of a real-valued function f over a nonempty set
X, call is X∗, is equal to the intersection of X and the level sets
of f that have a common points with X :

X∗ = ∩∞
k=0{x ∈ X|f(x) ≤ γk},

where {γk} is any scalar sequence with γk ↓ infx∈Xf(x).
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Theorem
Weierstrass’ Theorem Consider a closed proper function

f → (−∞,∞],

and assume that any one of the following three conditions holds:

(1) dom(f) is bounded.

(2) There exists a scalar γ̄ such that the level set

{x|f(x) ≤ γ̄}

is nonempty and bounded.

(3) f is coercive.

Then the set of minima of f over ℜn is nonempty and compact.
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Partial Minimization of convex functions

Theorem
Consider a function F : ℜn+m → (−∞,∞] and the function
f : ℜn → [−∞,∞] defined by

f(x) = infz∈ℜmF (x,z).

Then:

(a) If F is convex, then f is also convex.

(b) We have

P (epi(F )) ⊂ epi(f) ⊂ cl(P (epi(F ))),

where P (·) denotes projection on the space of (x,w), i.e., for
any subset S of ℜn+m+1, P (S) = (x,w)|(x, z, w) ∈ S.
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Saddle Point and Minimax Theory

Theorem
Saddle Point: A pair of vectors x∗ ∈ X and z∗ ∈ Z is called a
saddle point of ϕ if

ϕ(x∗, z) ≤ ϕ(x∗, z∗) ≤ ϕ(x, z∗), ∀x ∈ X, ∀z ∈ Z.

minimax equality:

supz∈Zinfx∈Xϕ(x, z) = infx∈Xsupz∈Zϕ(x, z).
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Saddle Point and Minimax Theory

Theorem
A pair (x∗, z∗) is a saddle point of ϕ if and only if the minimax
equality holds, and x∗ is an optimal solution of the problem:

minimize supz∈Zϕ(x, z), subject to x ∈ X,

while z∗ is an optimal solution of the problem

maximize infx∈Xϕ(x, z), subject to z ∈ Z
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EX 1
Saddle Points in Two Dimensions

Consider a function ϕ of two real variables x and z taking values in
compact intervals of X and Z, respectively. Assume that for each
z ∈ Z, the function ϕ(·, z) is minimized over X at a unique point
denoted x̂(z). Similarly, assume that for each x ∈ X, the function
ϕ(x, ·) is maximized over Z at a unique point denoted ẑ(x).
Assume further that the functions x̂(z) and ẑ(x) are continuous
over Z and X, respectively. Show that ϕ has a saddle point
(x∗, z∗). Use this to investigate the existence of saddle points of
ϕ(x, z) = x2 + z2 over X = [0, 1] and Z = [0, 1].
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Ex 2
Saddle Points of Quadratic Functions

Consider a quadratic function ϕ : X × Z → ℜ of the form

ϕ(x, z) = x′Qx+ x′Dz − z′Rz,

where Q and R are symmetric positive semidefinite n× n and
m×m matrices, respectively, D is some n×m matrix, and X and
Z are subsets of ℜn and ℜm, respectively. Derive conditions under
which ϕ has at least one saddle point.
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Ex 3
Convex-concave functions and saddle points

We say the function f : ℜn ×ℜm → ℜ is convex-concave if f(x, z)
is a concave function of z, for each fixed x, and a convex function
of x, for each fixed z. We also require its domain to have the
product form domf = A×B, where A ⊂ ℜn and B ⊂ ℜm are
convex.

(a) Give a second-order condition for a twice differentiable
function f : ℜn ×ℜm → ℜ to be convex-concave, interms of
its Hessian ∇2f(x, z).

(b) Suppose that f : ℜn ×ℜm → ℜ is convex-concave and
differentiable, with ∇f(x̂, ẑ) = 0. Show that the saddle point
property holds: for all x, z, we have

f(x̂, z ≤ f(x̂, ẑ)) ≤ f(x, ẑ).
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Show that this implies that f satisfies the strong max-min
property:

supzinfxf(x, z) = infxsupzf(x, z)

(and their common value is f(x̂, ẑ)).

(c) Now suppose that f : ℜn ×ℜm → ℜ is differentiable, but not
necessarily convex-concave, and the saddle-point property
holds at x̂, ẑ:

f(x̂, z ≤ f(x̂, ẑ)) ≤ f(x, ẑ).

for all x, z. Show that ∇f(x̂, ẑ) = 0.
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